# Teaching Kids Programming – Algorithms to Find the Pivot Integer of the First N Natural Numbers

Teaching Kids Programming – Algorithms to Find the Pivot Integer of the First N Natural Numbers | ninjasquad

Teaching Kids Programming: Videos on Data Structures and Algorithms

Given a positive integer n, find the pivot integer x such that: The sum of all elements between 1 and x inclusively equals the sum of all elements between x and n inclusively. Return the pivot integer x. If no such integer exists, return -1. It is guaranteed that there will be at most one pivot index for the given input.

Example 1:
Input: n = 8
Output: 6
Explanation: 6 is the pivot integer since: 1 + 2 + 3 + 4 + 5 + 6 = 6 + 7 + 8 = 21.

Example 2:
Input: n = 1
Output: 1
Explanation: 1 is the pivot integer since: 1 = 1.

Example 3:
Input: n = 4
Output: -1
Explanation: It can be proved that no such integer exist.

Constraints:
1 <= n <= 1000
Can you use brute force to check every number from 1 to n if any of them is the pivot integer?
If you know the sum of [1: pivot], how can you efficiently calculate the sum of the other parts?

### Find the Pivot Integer of the First N Natural Numbers (Bruteforce, Binary Search, Math, Prefix Sum)

We can solve this puzzle via four different algorithms:

#### Bruteforce Algorithm

We can certainly bruteforce the possible pivot integer X – there are only N choices. We try them until we find one.

 ```1 2 3 4 5 6 7 8 9 ``` ```class Solution:     @cache     def pivotInteger(self, n: int) -> int:         for i in range(1, n + 1):             a = sum(range(1, i + 1))             b = sum(range(i, n + 1))             if a == b:                 return i         return -1```
```class Solution:
@cache
def pivotInteger(self, n: int) -> int:
for i in range(1, n + 1):
a = sum(range(1, i + 1))
b = sum(range(i, n + 1))
if a == b:
return i
return -1```

#### Bruteforce Algorithm via Next Function

This can be also rewritten using the next function in one line:

 ```1 2 3 4 ``` ```class Solution:     @cache     def pivotInteger(self, n: int) -> int:         return next((i for i in range(1, n + 1) if sum(range(1, i + 1)) == sum(range(i, n + 1))), -1 )```
```class Solution:
@cache
def pivotInteger(self, n: int) -> int:
return next((i for i in range(1, n + 1) if sum(range(1, i + 1)) == sum(range(i, n + 1))), -1 )```

The time complexity is O(N^2). It is quadratic because the sum inside the loop takes O(N) time.

#### Prefix Sum Algorithm (accumulated sum)

We can bring down the overall time complexity to O(N) by making the calculation of left and right part using the accumulate or prefix sum:

 ```1 2 3 4 5 6 7 8 9 10 11 ``` ```class Solution:     @cache     def pivotInteger(self, n: int) -> int:                 a = 0         total = sum(range(1, n + 1))         for i in range(1, n + 1):             a += i             b = total - a + i             if a == b:                 return i         return -1```
```class Solution:
@cache
def pivotInteger(self, n: int) -> int:
a = 0
total = sum(range(1, n + 1))
for i in range(1, n + 1):
a += i
b = total - a + i
if a == b:
return i
return -1```

The time complexity is O(N), and the space complexity is O(1) constant. Here is O(N) space to store the prefix sums using the accumulate function:

 ```1 2 3 4 5 6 7 8 9 10 11 ``` ```class Solution:     @cache     def pivotInteger(self, n: int) -> int:         total = sum(range(1, n + 1))         prefix = list(accumulate(range(1, n + 1)))         for i in range(1, n + 1):             a = prefix[i - 1]             b = total - prefix[i - 1] + i             if a == b:                 return i         return -1```
```class Solution:
@cache
def pivotInteger(self, n: int) -> int:
total = sum(range(1, n + 1))
prefix = list(accumulate(range(1, n + 1)))
for i in range(1, n + 1):
a = prefix[i - 1]
b = total - prefix[i - 1] + i
if a == b:
return i
return -1```

#### Math Algorithm via Equation of Arithmetic Progression

Since it is consecutive numbers, we can compute the sum using the math equation for sum of any arithmetic progression numbers:

 ```1 2 3 4 5 6 7 8 9 ``` ```class Solution:     @cache     def pivotInteger(self, n: int) -> int:         for i in range(1, n + 1):             a = (1 + i) * i // 2             b = (i + n) * (n - i + 1) // 2             if a == b:                 return i         return -1```
```class Solution:
@cache
def pivotInteger(self, n: int) -> int:
for i in range(1, n + 1):
a = (1 + i) * i // 2
b = (i + n) * (n - i + 1) // 2
if a == b:
return i
return -1```

The sum of a, a + 1, a + 2, … b can be computed as:

$tex_e8ba7b24086eae93e875589cc81e2c29 Teaching Kids Programming - Algorithms to Find the Pivot Integer of the First N Natural Numbers algorithms Binary Search Algorithm Brute Force Algorithm math python teaching kids programming youtube video$.

This can be proved using Math Induction.

#### Binary Search Algorithm

This has O(N) time and O(1) space. We can binary search the pivot integer so that the time complexity is $tex_901934ce161a920ea1cf69a495f8463e Teaching Kids Programming - Algorithms to Find the Pivot Integer of the First N Natural Numbers algorithms Binary Search Algorithm Brute Force Algorithm math python teaching kids programming youtube video$

 ```1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ``` ```class Solution:     @cache     def pivotInteger(self, n: int) -> int:         L = 1         R = n         while L <= R:             m = L + R >> 1             a = (1 + m) * m // 2             b = (m + n) * (n - m + 1) // 2             if a == b:                 return m             if a < b:                 L = m + 1             else:                 R = m - 1         return -1```
```class Solution:
@cache
def pivotInteger(self, n: int) -> int:
L = 1
R = n
while L <= R:
m = L + R >> 1
a = (1 + m) * m // 2
b = (m + n) * (n - m + 1) // 2
if a == b:
return m
if a < b:
L = m + 1
else:
R = m - 1
return -1```

If the sum of Left is smaller than sum of Right, we need to move the pivot index to the right, otherwise move the pivot index to the left.

#### Math Proof to Solve the Equation

Let’s assum the pivot integer is x. The left sum is $tex_85598d00428895ce5d6e4489f85ee1b8 Teaching Kids Programming - Algorithms to Find the Pivot Integer of the First N Natural Numbers algorithms Binary Search Algorithm Brute Force Algorithm math python teaching kids programming youtube video$, the right sum is the total sum minus the left sum plus x which is $tex_9522659eeb5aab5ac606756a026b101d Teaching Kids Programming - Algorithms to Find the Pivot Integer of the First N Natural Numbers algorithms Binary Search Algorithm Brute Force Algorithm math python teaching kids programming youtube video$

$tex_2426668408e8ca064866e95fffb85b20 Teaching Kids Programming - Algorithms to Find the Pivot Integer of the First N Natural Numbers algorithms Binary Search Algorithm Brute Force Algorithm math python teaching kids programming youtube video$
$tex_d61a4c8526f815eefb4db57d548a8d1a Teaching Kids Programming - Algorithms to Find the Pivot Integer of the First N Natural Numbers algorithms Binary Search Algorithm Brute Force Algorithm math python teaching kids programming youtube video$
$tex_94050098ad6b9b7f689c9df6d29f4796 Teaching Kids Programming - Algorithms to Find the Pivot Integer of the First N Natural Numbers algorithms Binary Search Algorithm Brute Force Algorithm math python teaching kids programming youtube video$
$tex_dbf232cadaba48c7f98921e77a71d53d Teaching Kids Programming - Algorithms to Find the Pivot Integer of the First N Natural Numbers algorithms Binary Search Algorithm Brute Force Algorithm math python teaching kids programming youtube video$
$tex_61ac131e26473af95823e01ad513fe77 Teaching Kids Programming - Algorithms to Find the Pivot Integer of the First N Natural Numbers algorithms Binary Search Algorithm Brute Force Algorithm math python teaching kids programming youtube video$
$tex_b02a974dba1b9f262d7b930149db28eb Teaching Kids Programming - Algorithms to Find the Pivot Integer of the First N Natural Numbers algorithms Binary Search Algorithm Brute Force Algorithm math python teaching kids programming youtube video$

So, we need to check if the square root of the sum between 1 to N inclusive is a square root. The space complexity is O(1) constant, and the time complexity is O(1) amortized since the modern CPUs know how to compute the square roots efficiently and has inbuilt specific instructions to handle the SQRT calculations.

Obviously, this is the most efficient solution among all.

 ```1 2 3 4 5 6 7 ``` ```class Solution:     @cache     def pivotInteger(self, n: int) -> int:         x = sqrt((n+1)*n//2)         if x.is_integer():             return int(x)         return -1```
```class Solution:
@cache
def pivotInteger(self, n: int) -> int:
x = sqrt((n+1)*n//2)
if x.is_integer():
return int(x)
return -1```

GD Star Rating
loading…

1435 words
Last Post: A Simple Testing Framework for Python

Source: Internet

We are offering free coding tuts

X